Modular and Recursive Kinematics and Dynamics for Parallel Manipulators
نویسندگان
چکیده
Constrained multibody systems typically feature multiple closed kinematic loops that constrain the relative motions and forces within the system. Typically, such systems possess far more articulated degrees-of-freedom (within the chains) than overall end-effector degrees-of-freedom. Thus, actuation of a subset of the articulations creates mixture of active and passive joints within the chain. The presence of such passive joints interferes with the effective modular formulation of the dynamic equations-of-motion in terms of a minimal set of actuator coordinates as well the subsequent recursive solution for both forward and inverse dynamics applications. Thus, in this paper, we examine the development of modular and recursive formulations of equations-of-motion in terms of a minimal set of actuated-joint-coordinates for an exactly-actuated parallel manipulators. The 3 RRR planar parallel manipulator, selected to serve as a case-study, is an illustrative example of a multi-loop, multi-degree-of-freedom system with mixtures of active/passive joints. The concept of decoupled natural orthogonal complement (DeNOC) is combined with the spatial parallelism inherent in parallel mechanisms to develop a dynamics formulation that is both recursive and modular. An algorithmic approach to the development of both forward and inverse dynamics is highlighted. The presented simulation studies highlight the overall good numerical behavior of the developed formulation, both in terms of accuracy and lack of formulation stiffness.
منابع مشابه
Recursive Kinematics and Inverse Dynamics for a Planar 3R Parallel Manipulator
We focus on the development of modular and recursive formulations for the inverse dynamics of parallel architecture manipulators in this paper. The modular formulation of mathematical models is attractive especially when existing sub-models may be assembled to create different topologies, e.g., cooperative robotic systems. Recursive algorithms are desirable from the viewpoint of simplicity and ...
متن کاملRecursive Kinematics and Inverse Dynamics for Parallel Manipulators
We examine here the modular and recursive formulation of the inverse dynamics of parallel architecture manipulators. The concept of the decoupled natural orthogonal complement (DeNOC) is combined with the spatial parallelism of the robots of interest to develop an inverse dynamics algorithm which is both recursive and modular. INTRODUCTION The modular and recursive inverse dynamics formulation ...
متن کاملDynamics of Space Free-Flying Robots with Flexible Appendages
A Space Free-Flying Robot (SFFR) includes an actuated base equipped with one or more manipulators to perform on-orbit missions. Distinct from fixed-based manipulators, the spacecraft (base) of a SFFR responds to dynamic reaction forces due to manipulator motions. In order to control such a system, it is essential to consider the dynamic coupling between the manipulators and the base. Explicit d...
متن کاملحل سینماتیک مستقیم روبات استوارت- گوف با استفاده از روش ترکیبی بهبود یافته (ترکیب شبکه عصبی و نیوتن- رافسون مرتبه 3)
Many efforts have been done in recent years to decrease the required time for analysis of FKP (Forward Kinematics Problem) of parallel robots.This paper starts with developing kinematics of a parallel robot and finishes with a suggested algorithm to solve forward kinematics of robots. In this paper, by combining the artificial neural networks and a 3rd-order numerical algorithm, an improved ...
متن کاملAn analysis of the kinematics and dynamics of underactuated manipulators
In this paper we study the dynamics and kinematics of manipulators that have fewer actuators than degrees of freedom. These under{actuated manipulators arise in a number of important applications such as free{ ying space robots, hyper{redundant manipulators, manipulators with structural exibility, etc. In our analysis we decompose such under{actuated manipulators into component active and passi...
متن کامل